F 1 2014 : Turbocharged and Downsized Ice and Kers Boost

نویسندگان

  • Kers Boost
  • Albert Boretti
چکیده

The paper discusses the FIA’s World Motor Sport Council (WMSC) new regulations for F1 power trains. The new regulations will see the 2.4 liter V8s currently used replaced by 1.6 liter V6s engines starting in 2014. The power units will have high pressure gasoline direct injection up to 500 bar. Engine speed limits on the new engines will be reduced from the current 18,000 rpm to a maximum of 15,000 rpm. The more environmentally-friendly units will be supported by augmented power output of the engine via energymanagement and energy-recovery systems. The paper discusses the possible performances the novel F1 cars could achieve with these novel engines and kinetic energy recovery systems, as well as the declared goal of making the F1 racing greener, the relevance of F1 to road cars, and finally the use of resource restrictions in F1. The major issue with new F1 rules is not just the total cost of research and development within the budget, but the ability to make the most out of the investment made for a more sustainable and greener road transport. The proposed high torque 475 kW 1.6 liter V6 turbo engine coupled with the proposed small 0.3 MJ 120 kW mechanical KERS may permit fuel savings of 40% vs. today’s low torque 525 kW 2.4 liters V8 naturally aspirated and even better driving performances on the most part of the race tracks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Simulation Accuracy of a Downsized Turbocharged SI Engine by Developing a Predictive Combustion Model in 1D Simulation Software

In this paper we aim to develop a predictive combustion model for a turbocharged engine in GT-Power software to better simulate engine characteristics and study its behavior under variety of conditions. Experimental data from combustion was initially being used for modelling combustion in software and these data were used for model calibration and result validation. EF7-TC engine was chosen for...

متن کامل

Modeling and control of actuators and co-surge in turbocharged engines

The torque response of the engine is important for the driving experience of a vehicle. In spark ignited engines, torque is proportional to the air flow into the cylinders. Controlling torque therefore implies controlling air flow. In modern turbocharged engines, the driver commands are interpreted by an electronic control unit that controls the engine through electromechanical and pneumatic ac...

متن کامل

Observer Design for Downsized Gasoline Engine Control Using 1D Engine Simulation

Observer Design for Downsized Gasoline Engine Control Using 1D Engine Simulation — This study presents the use of a 1D engine model for the control design of a twin-scroll turbocharged gasoline direct injection 2.0 l i4 engine with twin camphaser. This virtual engine is used for the development of the in-cylinder mass observer which is a crucial issue for the control of such an engine because o...

متن کامل

Designing of LQIG method for controlling the wastegate of a turbocharged diesel engine to increase engine output power using experimental results of engine test chamber laboratory

In this paper, first, using a test set on a turbocharged diesel engine in the engine test room, a nonlinear model is obtained and it is linearized around several operation points. Then, for the linear models, a linear quadratic integral Gaussian controller (LQIG) with variable parameters as function of engine speed is designed and simulated. In the proposed method, by controlling the wastegate,...

متن کامل

Performance Evaluation and Emissions improving of Turbocharged DI Diesel Engine with Exhaust Gas Recirculation (EGR)

Nitrogen oxides (NOx) contribute to a wide range of environmental effects including the formation of acid rain and destroy ozone layer. In-cylinder high temperature flame and high oxygen concentration are the parameters which affect the NOx emissions. The EGR system is a very effective way for reducing NOx emission from a diesel engine (via reduction of these parameters), particularly at the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012